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Large-eddy simulation (LES) of fluid turbulence is one of a class of multi-scale problems in which one
seeks to describe only the largest scales of the solution. One is then concerned with the small scales only
to the extent that they affect the large scales. Other examples include the continuum approximation,
shock capturing, homogenization of complex materials (e.g. composites), climate modeling and cosmology.
Turbulence, which is also part of the climate modeling problem, is unusual because the small scales arise
from intrinsic chaotic dynamics, and because there is no natural separation between the large scales of
interest and the small scales to be modeled in an LES. These attributes require that some care be taken
in formulating an LES. In this talk, the formulation of LES, its relation to numerical discretization and a
new approach to LES modeling will be explored.

A starting point for LES development is the definition of the large-scales to be simulated. This is similar
to numerical discretization in that a finite-dimensional representation of an infinite dimensional solution is
defined. However, in this case, there is no consideration of the convergence of the representation, since by
definition the representation does not include all relevant scales. The mapping to the finite dimensional
representation (the filter) can be defined as in common numerical representations such as Fourier spectral,
finite volume and finite element representations. Clearly, the unrepresented small scales and the way they
are modeled depend on the representation used. For specificity and simplicity, primarily finite volume
representations will be discussed here, but similar considerations apply for other schemes.

In a standard finite volume numerical discretization of the Navier-Stokes equations, the evolution of the
state variables (volume-averaged velocities) is written in terms of the surface momentum fluxes and forces,
which are approximated from the state variables by assuming that the velocity fields are smooth on the scale
of the volumes. In the LES context, this assumption is not valid as illustrated in figure 1. Furthermore,
because the volume averaged velocities provide so little information about the surface fluxes, these fluxes
can be considered to be stochastic. Determining the fluxes is the primary modeling problem. A natural
choice for a deterministic model is the average flux, conditioned on the values of the state variables (the
volume-averaged velocities). This model has the good properties that it minimizes the mean-square error
and it guarantees that the statistics of the resulting LES will match those of filtered turbulence [1, 3]. We
call this the ideal LES evolution.

Unfortunately, the ideal LES is a conditional average with a large number of conditions (the number of
degrees of freedom in the representation) and is therefore impractical to determine. But, formally ap-
proximating the ideal LES evolution is an attractive approach to constructing an LES model. Stochastic
estimation is such an approximation, which we use to develop optimal LES models. The inputs to opti-
mal LES are the correlations of the surface fluxes with the volume averaged velocities, which have been
determined from direct numerical simulations and from theoretical considerations. The resulting models,
have been used to perform a number of large eddy simulations [4, 2, 5], with exceptionally good results
(see figure 2).



Figure 1: Model turbulent signal (red) and finite volume projection (black). Note that the projected signal
provides little information about the derivatives at the volume boundaries.
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Figure 2: Spectrum for finite-volume filtered isotropic turbulence determined from both DNS and LES.
DNS is at Reλ = 164.
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